Seeding neural network quantum states with tensor network states (2506.23550v1)
Abstract: We find an efficient approach to approximately convert matrix product states (MPSs) into restricted Boltzmann machine wave functions consisting of a multinomial hidden unit through a canonical polyadic (CP) decomposition of the MPSs. This method allows us to generate well-behaved initial neural network quantum states for quantum many-body ground-state calculations in polynomial time of the number of variational parameters and systematically shorten the distance between the initial states and the ground states with increasing the rank of the CP decomposition. We demonstrate the efficiency of our method by taking the transverse-field Ising model as an example and discuss possible applications of our method to more general quantum many-body systems in which the ground-state wave functions possess complex nodal structures.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.