Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 131 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

From Large-scale Audio Tagging to Real-Time Explainable Emergency Vehicle Sirens Detection (2506.23437v1)

Published 30 Jun 2025 in cs.SD, cs.AI, and eess.AS

Abstract: Accurate recognition of Emergency Vehicle (EV) sirens is critical for the integration of intelligent transportation systems, smart city monitoring systems, and autonomous driving technologies. Modern automatic solutions are limited by the lack of large scale, curated datasets and by the computational demands of state of the art sound event detection models. This work introduces E2PANNs (Efficient Emergency Pre trained Audio Neural Networks), a lightweight Convolutional Neural Network architecture derived from the PANNs framework, specifically optimized for binary EV siren detection. Leveraging our dedicated subset of AudioSet (AudioSet EV) we fine-tune and evaluate E2PANNs across multiple reference datasets and test its viability on embedded hardware. The experimental campaign includes ablation studies, cross-domain benchmarking, and real-time inference deployment on edge device. Interpretability analyses exploiting Guided Backpropagation and ScoreCAM algorithms provide insights into the model internal representations and validate its ability to capture distinct spectrotemporal patterns associated with different types of EV sirens. Real time performance is assessed through frame wise and event based detection metrics, as well as a detailed analysis of false positive activations. Results demonstrate that E2PANNs establish a new state of the art in this research domain, with high computational efficiency, and suitability for edge-based audio monitoring and safety-critical applications.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube