Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

DGE-YOLO: Dual-Branch Gathering and Attention for Accurate UAV Object Detection (2506.23252v1)

Published 29 Jun 2025 in cs.CV

Abstract: The rapid proliferation of unmanned aerial vehicles (UAVs) has highlighted the importance of robust and efficient object detection in diverse aerial scenarios. Detecting small objects under complex conditions, however, remains a significant challenge. Existing approaches often prioritize inference speed, leading to degraded performance when handling multi-modal inputs. To address this, we present DGE-YOLO, an enhanced YOLO-based detection framework designed to effectively fuse multi-modal information. Specifically, we introduce a dual-branch architecture for modality-specific feature extraction, enabling the model to process both infrared and visible images. To further enrich semantic representation, we propose an Efficient Multi-scale Attention (EMA) mechanism that enhances feature learning across spatial scales. Additionally, we replace the conventional neck with a Gather-and-Distribute module to mitigate information loss during feature aggregation. Extensive experiments on the Drone Vehicle dataset demonstrate that DGE-YOLO achieves superior performance over state-of-the-art methods, validating its effectiveness in multi-modal UAV object detection tasks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com