Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

FedRef: Communication-Efficient Bayesian Fine Tuning with Reference Model (2506.23210v1)

Published 29 Jun 2025 in cs.LG, cs.AI, and cs.DC

Abstract: Federated learning(FL) is used for distributed scenarios to train artificial intelligence(AI) models while ensuring users' privacy. In federated learning scenario, the server generally never knows about users' data. This type of concept makes the AI training process efficient in terms of data privacy. However, regarding model performance, federated AI models may not sufficiently satisfy AI users' expectations. Furthermore, AI users have a wide range of different needs. It is not easy to satisfy the whole users needs. These types of issues can be addressed through AI model optimization, fine-tuning, or personalization to achieve optimal model performance. To address model optimization challenges, we propose reference model-based federated learning for optimal fine-tuning, which overcomes catastrophic forgetting in each round. This method is derived from Bayesian parameter-efficient transfer learning, which includes an optimal proximal term and enables overcoming the catastrophic forgetting issue in each round by utilizing a reference model that incorporates previous model parameters. As a result, this method achieves both high model performance and low computing cost.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.