Papers
Topics
Authors
Recent
2000 character limit reached

Enhancing Spatial Reasoning in Multimodal Large Language Models through Reasoning-based Segmentation (2506.23120v1)

Published 29 Jun 2025 in cs.CV

Abstract: Recent advances in point cloud perception have demonstrated remarkable progress in scene understanding through vision-language alignment leveraging LLMs. However, existing methods may still encounter challenges in handling complex instructions that require accurate spatial reasoning, even if the 3D point cloud data provides detailed spatial cues such as size and position for identifying the targets. To tackle this issue, we propose Relevant Reasoning Segmentation (R$2$S), a reasoning-based segmentation framework. The framework emulates human cognitive processes by decomposing spatial reasoning into two sequential stages: first identifying relevant elements, then processing instructions guided by their associated visual priors. Furthermore, acknowledging the inadequacy of existing datasets in complex reasoning tasks, we introduce 3D ReasonSeg, a reasoning-based segmentation dataset comprising 25,185 training samples and 3,966 validation samples with precise annotations. Both quantitative and qualitative experiments demonstrate that the R$2$S and 3D ReasonSeg effectively endow 3D point cloud perception with stronger spatial reasoning capabilities, and we hope that they can serve as a new baseline and benchmark for future work.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.