Papers
Topics
Authors
Recent
2000 character limit reached

Learning Counterfactually Decoupled Attention for Open-World Model Attribution (2506.23074v1)

Published 29 Jun 2025 in cs.CV, cs.CR, and cs.LG

Abstract: In this paper, we propose a Counterfactually Decoupled Attention Learning (CDAL) method for open-world model attribution. Existing methods rely on handcrafted design of region partitioning or feature space, which could be confounded by the spurious statistical correlations and struggle with novel attacks in open-world scenarios. To address this, CDAL explicitly models the causal relationships between the attentional visual traces and source model attribution, and counterfactually decouples the discriminative model-specific artifacts from confounding source biases for comparison. In this way, the resulting causal effect provides a quantification on the quality of learned attention maps, thus encouraging the network to capture essential generation patterns that generalize to unseen source models by maximizing the effect. Extensive experiments on existing open-world model attribution benchmarks show that with minimal computational overhead, our method consistently improves state-of-the-art models by large margins, particularly for unseen novel attacks. Source code: https://github.com/yzheng97/CDAL.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.