Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 61 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Denoising Multi-Color QR Codes and Stiefel-Valued Data by Relaxed Regularizations (2506.22826v1)

Published 28 Jun 2025 in math.OC, cs.CV, cs.NA, and math.NA

Abstract: The handling of manifold-valued data, for instance, plays a central role in color restoration tasks relying on circle- or sphere-valued color models, in the study of rotational or directional information related to the special orthogonal group, and in Gaussian image processing, where the pixel statistics are interpreted as values on the hyperbolic sheet. Especially, to denoise these kind of data, there have been proposed several generalizations of total variation (TV) and Tikhonov-type denoising models incorporating the underlying manifolds. Recently, a novel, numerically efficient denoising approach has been introduced, where the data are embedded in an Euclidean ambient space, the non-convex manifolds are encoded by a series of positive semi-definite, fixed-rank matrices, and the rank constraint is relaxed to obtain a convexification that can be solved using standard algorithms from convex analysis. The aim of the present paper is to extent this approach to new kinds of data like multi-binary and Stiefel-valued data. Multi-binary data can, for instance, be used to model multi-color QR codes whereas Stiefel-valued data occur in image and video-based recognition. For both new data types, we propose TV- and Tikhonov-based denoising modelstogether with easy-to-solve convexification. All derived methods are evaluated on proof-of-concept, synthetic experiments.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.