Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Efficient Multi-Crop Saliency Partitioning for Automatic Image Cropping (2506.22814v1)

Published 28 Jun 2025 in cs.CV

Abstract: Automatic image cropping aims to extract the most visually salient regions while preserving essential composition elements. Traditional saliency-aware cropping methods optimize a single bounding box, making them ineffective for applications requiring multiple disjoint crops. In this work, we extend the Fixed Aspect Ratio Cropping algorithm to efficiently extract multiple non-overlapping crops in linear time. Our approach dynamically adjusts attention thresholds and removes selected crops from consideration without recomputing the entire saliency map. We discuss qualitative results and introduce the potential for future datasets and benchmarks.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.