Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Offline Reinforcement Learning for Mobility Robustness Optimization (2506.22793v1)

Published 28 Jun 2025 in cs.NI, cs.AI, and cs.PF

Abstract: In this work we revisit the Mobility Robustness Optimisation (MRO) algorithm and study the possibility of learning the optimal Cell Individual Offset tuning using offline Reinforcement Learning. Such methods make use of collected offline datasets to learn the optimal policy, without further exploration. We adapt and apply a sequence-based method called Decision Transformers as well as a value-based method called Conservative Q-Learning to learn the optimal policy for the same target reward as the vanilla rule-based MRO. The same input features related to failures, ping-pongs, and other handover issues are used. Evaluation for realistic New Radio networks with 3500 MHz carrier frequency on a traffic mix including diverse user service types and a specific tunable cell-pair shows that offline-RL methods outperform rule-based MRO, offering up to 7% improvement. Furthermore, offline-RL can be trained for diverse objective functions using the same available dataset, thus offering operational flexibility compared to rule-based methods.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: