Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

P4OMP: Retrieval-Augmented Prompting for OpenMP Parallelism in Serial Code (2506.22703v1)

Published 28 Jun 2025 in cs.SE and cs.AI

Abstract: We present P4OMP, a retrieval-augmented framework for transforming serial C/C++ code into OpenMP-annotated parallel code using LLMs. To our knowledge, this is the first system to apply retrieval-based prompting for OpenMP pragma correctness without model fine-tuning or compiler instrumentation. P4OMP leverages Retrieval-Augmented Generation (RAG) with structured instructional knowledge from OpenMP tutorials to improve the reliability of prompt-driven code generation. By grounding generation in the retrieved context, P4OMP improves syntactic correctness compared to baseline prompting with GPT-3.5-Turbo. We evaluate P4OMP against a baseline, GPT-3.5-Turbo without retrieval, on a comprehensive benchmark of 108 real-world C++ programs drawn from Stack Overflow, PolyBench, and NAS benchmark suites. P4OMP achieves 100% compilation success on all parallelizable cases, while the baseline fails to compile in 20 out of 108 cases. Six cases that rely on non-random-access iterators or thread-unsafe constructs are excluded due to fundamental OpenMP limitations. A detailed analysis demonstrates how P4OMP consistently avoids scoping errors, syntactic misuse, and invalid directive combinations that commonly affect baseline-generated code. We further demonstrate strong runtime scaling across seven compute-intensive benchmarks on an HPC cluster. P4OMP offers a robust, modular pipeline that significantly improves the reliability and applicability of LLM-generated OpenMP code.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.