Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

RL-based Adaptive Task Offloading in Mobile-Edge Computing for Future IoT Networks (2506.22474v1)

Published 20 Jun 2025 in cs.NI, cs.SY, and eess.SY

Abstract: The Internet of Things (IoT) has been increasingly used in our everyday lives as well as in numerous industrial applications. However, due to limitations in computing and power capabilities, IoT devices need to send their respective tasks to cloud service stations that are usually located at far distances. Having to transmit data far distances introduces challenges for services that require low latency such as industrial control in factories and plants as well as artificial intelligence assisted autonomous driving. To solve this issue, mobile edge computing (MEC) is deployed at the networks edge to reduce transmission time. In this regard, this study proposes a new offloading scheme for MEC-assisted ultra dense cellular networks using reinforcement learning (RL) techniques. The proposed scheme enables efficient resource allocation and dynamic offloading decisions based on varying network conditions and user demands. The RL algorithm learns from the networks historical data and adapts the offloading decisions to optimize the networks overall performance. Non-orthogonal multiple access is also adopted to improve resource utilization among the IoT devices. Simulation results demonstrate that the proposed scheme outperforms other stateof the art offloading algorithms in terms of energy efficiency, network throughput, and user satisfaction.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.