Features-based embedding or Feature-grounding (2506.22442v1)
Abstract: In everyday reasoning, when we think about a particular object, we associate it with a unique set of expected properties such as weight, size, or more abstract attributes like density or horsepower. These expectations are shaped by our prior knowledge and the conceptual categories we have formed through experience. This paper investigates how such knowledge-based structured thinking can be reproduced in deep learning models using features based embeddings. Specially, it introduces an specific approach to build feature-grounded embedding, aiming to align shareable representations of operable dictionary with interpretable domain-specific conceptual features.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.