Evaluating VisualRAG: Quantifying Cross-Modal Performance in Enterprise Document Understanding (2506.21604v1)
Abstract: Current evaluation frameworks for multimodal generative AI struggle to establish trustworthiness, hindering enterprise adoption where reliability is paramount. We introduce a systematic, quantitative benchmarking framework to measure the trustworthiness of progressively integrating cross-modal inputs such as text, images, captions, and OCR within VisualRAG systems for enterprise document intelligence. Our approach establishes quantitative relationships between technical metrics and user-centric trust measures. Evaluation reveals that optimal modality weighting with weights of 30% text, 15% image, 25% caption, and 30% OCR improves performance by 57.3% over text-only baselines while maintaining computational efficiency. We provide comparative assessments of foundation models, demonstrating their differential impact on trustworthiness in caption generation and OCR extraction-a vital consideration for reliable enterprise AI. This work advances responsible AI deployment by providing a rigorous framework for quantifying and enhancing trustworthiness in multimodal RAG for critical enterprise applications.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.