exa-AMD: A Scalable Workflow for Accelerating AI-Assisted Materials Discovery and Design (2506.21449v1)
Abstract: exa-AMD is a Python-based application designed to accelerate the discovery and design of functional materials by integrating AI/ML tools, materials databases, and quantum mechanical calculations into scalable, high-performance workflows. The execution model of exa-AMD relies on Parsl, a task-parallel programming library that enables a flexible execution of tasks on any computing resource from laptops to supercomputers. By using Parsl, exa-AMD is able to decouple the workflow logic from execution configuration, thereby empowering researchers to scale their workflows without having to reimplement them for each system.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.