Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Enhancing Automatic Term Extraction with Large Language Models via Syntactic Retrieval (2506.21222v1)

Published 26 Jun 2025 in cs.CL and cs.IR

Abstract: Automatic Term Extraction (ATE) identifies domain-specific expressions that are crucial for downstream tasks such as machine translation and information retrieval. Although LLMs have significantly advanced various NLP tasks, their potential for ATE has scarcely been examined. We propose a retrieval-based prompting strategy that, in the few-shot setting, selects demonstrations according to \emph{syntactic} rather than semantic similarity. This syntactic retrieval method is domain-agnostic and provides more reliable guidance for capturing term boundaries. We evaluate the approach in both in-domain and cross-domain settings, analyzing how lexical overlap between the query sentence and its retrieved examples affects performance. Experiments on three specialized ATE benchmarks show that syntactic retrieval improves F1-score. These findings highlight the importance of syntactic cues when adapting LLMs to terminology-extraction tasks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.