Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 44 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Linearity-based neural network compression (2506.21146v1)

Published 26 Jun 2025 in cs.LG, cs.AI, and stat.ML

Abstract: In neural network compression, most current methods reduce unnecessary parameters by measuring importance and redundancy. To augment already highly optimized existing solutions, we propose linearity-based compression as a novel way to reduce weights in a neural network. It is based on the intuition that with ReLU-like activation functions, neurons that are almost always activated behave linearly, allowing for merging of subsequent layers. We introduce the theory underlying this compression and evaluate our approach experimentally. Our novel method achieves a lossless compression down to 1/4 of the original model size in over the majority of tested models. Applying our method on already importance-based pruned models shows very little interference between different types of compression, demonstrating the option of successful combination of techniques. Overall, our work lays the foundation for a new type of compression method that enables smaller and ultimately more efficient neural network models.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.