TSDASeg: A Two-Stage Model with Direct Alignment for Interactive Point Cloud Segmentation (2506.20991v1)
Abstract: The rapid advancement of 3D vision-LLMs (VLMs) has spurred significant interest in interactive point cloud processing tasks, particularly for real-world applications. However, existing methods often underperform in point-level tasks, such as segmentation, due to missing direct 3D-text alignment, limiting their ability to link local 3D features with textual context. To solve this problem, we propose TSDASeg, a Two-Stage model coupled with a Direct cross-modal Alignment module and memory module for interactive point cloud Segmentation. We introduce the direct cross-modal alignment module to establish explicit alignment between 3D point clouds and textual/2D image data. Within the memory module, we employ multiple dedicated memory banks to separately store text features, visual features, and their cross-modal correspondence mappings. These memory banks are dynamically leveraged through self-attention and cross-attention mechanisms to update scene-specific features based on prior stored data, effectively addressing inconsistencies in interactive segmentation results across diverse scenarios. Experiments conducted on multiple 3D instruction, reference, and semantic segmentation datasets demonstrate that the proposed method achieves state-of-the-art performance.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.