Papers
Topics
Authors
Recent
Search
2000 character limit reached

Noise-Tolerant Hybrid Approach for Data-Driven Predictive Control

Published 25 Jun 2025 in eess.SY and cs.SY | (2506.20780v1)

Abstract: This paper focuses on a key challenge in hybrid data-driven predictive control: the effect of measurement noise on Hankel matrices. While noise is handled in direct and indirect methods, hybrid approaches often overlook its impact during trajectory estimation. We propose a Noise-Tolerant Data-Driven Predictive Control (NTDPC) framework that integrates singular value decomposition to separate system dynamics from noise within reduced-order Hankel matrices. This enables accurate prediction with shorter data horizons and lower computational effort. A sensitivity index is introduced to support horizon selection under different noise levels. Simulation results indicate improved robustness and efficiency compared to existing hybrid methods.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.