Smart Ride and Delivery Services with Electric Vehicles: Leveraging Bidirectional Charging for Profit Optimisation (2506.20401v2)
Abstract: With the rising popularity of electric vehicles (EVs), modern service systems, such as ride-hailing delivery services, are increasingly integrating EVs into their operations. Unlike conventional vehicles, EVs often have a shorter driving range, necessitating careful consideration of charging when fulfilling requests. With recent advances in Vehicle-to-Grid (V2G) technology - allowing EVs to also discharge energy back to the grid - new opportunities and complexities emerge. We introduce the Electric Vehicle Orienteering Problem with V2G (EVOP-V2G): a profit-maximization problem where EV drivers must select customer requests or orders while managing when and where to charge or discharge. This involves navigating dynamic electricity prices, charging station selection, and route constraints. We formulate the problem as a Mixed Integer Programming (MIP) model and propose two near-optimal metaheuristic algorithms: one evolutionary (EA) and the other based on large neighborhood search (LNS). Experiments on real-world data show our methods can double driver profits compared to baselines, while maintaining near-optimal performance on small instances and excellent scalability on larger ones. Our work highlights a promising path toward smarter, more profitable EV-based mobility systems that actively support the energy grid.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.