Papers
Topics
Authors
Recent
2000 character limit reached

FundaQ-8: A Clinically-Inspired Scoring Framework for Automated Fundus Image Quality Assessment (2506.20303v1)

Published 25 Jun 2025 in eess.IV, cs.CL, and cs.CV

Abstract: Automated fundus image quality assessment (FIQA) remains a challenge due to variations in image acquisition and subjective expert evaluations. We introduce FundaQ-8, a novel expert-validated framework for systematically assessing fundus image quality using eight critical parameters, including field coverage, anatomical visibility, illumination, and image artifacts. Using FundaQ-8 as a structured scoring reference, we develop a ResNet18-based regression model to predict continuous quality scores in the 0 to 1 range. The model is trained on 1800 fundus images from real-world clinical sources and Kaggle datasets, using transfer learning, mean squared error optimization, and standardized preprocessing. Validation against the EyeQ dataset and statistical analyses confirm the framework's reliability and clinical interpretability. Incorporating FundaQ-8 into deep learning models for diabetic retinopathy grading also improves diagnostic robustness, highlighting the value of quality-aware training in real-world screening applications.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com