A Family of Berndt-Type Integrals and Associated Barnes Multiple Zeta Functions (2506.20074v1)
Abstract: In this paper, we focus on calculating a specific class of Berndt integrals, which exclusively involves (hyperbolic) cosine functions. Initially, this integral is transformed into a Ramanujan-type hyperbolic (infinite) sum via contour integration. Subsequently, a function incorporating theta is defined. By employing the residue theorem, the mixed Ramanujan-type hyperbolic (infinite) sum with both hyperbolic cosine and hyperbolic sine in the denominator is converted into a simpler Ramanujan-type hyperbolic (infinite) sum, which contains only hyperbolic cosine or hyperbolic sine in the denominator. The simpler Ramanujan-type hyperbolic (infinite) sum is then evaluated using Jacobi elliptic functions, Fourier series expansions, and Maclaurin series expansions. Ultimately, the result is expressed as a rational polynomial of Gamma and \sqrt{pi}.Additionally, the integral is related to the Barnes multiple zeta function, which provides an alternative method for its calculation.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.