Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Correcting Hallucinations in News Summaries: Exploration of Self-Correcting LLM Methods with External Knowledge (2506.19607v1)

Published 24 Jun 2025 in cs.CL

Abstract: While LLMs have shown remarkable capabilities to generate coherent text, they suffer from the issue of hallucinations -- factually inaccurate statements. Among numerous approaches to tackle hallucinations, especially promising are the self-correcting methods. They leverage the multi-turn nature of LLMs to iteratively generate verification questions inquiring additional evidence, answer them with internal or external knowledge, and use that to refine the original response with the new corrections. These methods have been explored for encyclopedic generation, but less so for domains like news summarization. In this work, we investigate two state-of-the-art self-correcting systems by applying them to correct hallucinated summaries using evidence from three search engines. We analyze the results and provide insights into systems' performance, revealing interesting practical findings on the benefits of search engine snippets and few-shot prompts, as well as high alignment of G-Eval and human evaluation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 23 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube