Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 333 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A Principled Approach to Randomized Selection under Uncertainty: Applications to Peer Review and Grant Funding (2506.19083v2)

Published 23 Jun 2025 in cs.GT and cs.CY

Abstract: Many decision-making processes involve evaluating and then selecting items; examples include scientific peer review, job hiring, school admissions, and investment decisions. The eventual selection is performed by applying rules or deliberations to the raw evaluations, and then deterministically selecting the items deemed to be the best. These domains feature error-prone evaluations and uncertainty about future outcomes, which undermine the reliability of such deterministic selection rules. As a result, selection mechanisms involving explicit randomization that incorporate the uncertainty are gaining traction in practice. However, current randomization approaches are ad hoc, and as we prove, inappropriate for their purported objectives. In this paper, we propose a principled framework for randomized decision-making based on interval estimates of the quality of each item. We introduce MERIT (Maximin Efficient Randomized Interval Top-k), an optimization-based method that maximizes the worst-case expected number of top candidates selected, under uncertainty represented by overlapping intervals (e.g., confidence intervals or min-max intervals). MERIT provides an optimal resource allocation scheme under an interpretable notion of robustness. We develop a polynomial-time algorithm to solve the optimization problem and demonstrate empirically that the method scales to over 10,000 items. We prove that MERIT satisfies desirable axiomatic properties not guaranteed by existing approaches. Finally, we empirically compare algorithms on synthetic peer review data. Our experiments demonstrate that MERIT matches the performance of existing algorithms in expected utility under fully probabilistic review data models used in previous work, while outperforming previous methods with respect to our novel worst-case formulation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube