Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 200 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 44 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Broken Tokens? Your Language Model can Secretly Handle Non-Canonical Tokenizations (2506.19004v1)

Published 23 Jun 2025 in cs.CL

Abstract: Modern tokenizers employ deterministic algorithms to map text into a single "canonical" token sequence, yet the same string can be encoded as many non-canonical tokenizations using the tokenizer vocabulary. In this work, we investigate the robustness of LMs to text encoded with non-canonical tokenizations entirely unseen during training. Surprisingly, when evaluated across 20 benchmarks, we find that instruction-tuned models retain up to 93.4% of their original performance when given a randomly sampled tokenization, and 90.8% with character-level tokenization. We see that overall stronger models tend to be more robust, and robustness diminishes as the tokenization departs farther from the canonical form. Motivated by these results, we then identify settings where non-canonical tokenization schemes can improve performance, finding that character-level segmentation improves string manipulation and code understanding tasks by up to +14%, and right-aligned digit grouping enhances large-number arithmetic by +33%. Finally, we investigate the source of this robustness, finding that it arises in the instruction-tuning phase. We show that while both base and post-trained models grasp the semantics of non-canonical tokenizations (perceiving them as containing misspellings), base models try to mimic the imagined mistakes and degenerate into nonsensical output, while post-trained models are committed to fluent responses. Overall, our findings suggest that models are less tied to their tokenizer than previously believed, and demonstrate the promise of intervening on tokenization at inference time to boost performance.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 82 likes.

Upgrade to Pro to view all of the tweets about this paper: