Papers
Topics
Authors
Recent
2000 character limit reached

Fast State-Augmented Learning for Wireless Resource Allocation with Dual Variable Regression (2506.18748v1)

Published 23 Jun 2025 in eess.SP and cs.LG

Abstract: We consider resource allocation problems in multi-user wireless networks, where the goal is to optimize a network-wide utility function subject to constraints on the ergodic average performance of users. We demonstrate how a state-augmented graph neural network (GNN) parametrization for the resource allocation policy circumvents the drawbacks of the ubiquitous dual subgradient methods by representing the network configurations (or states) as graphs and viewing dual variables as dynamic inputs to the model, viewed as graph signals supported over the graphs. Lagrangian maximizing state-augmented policies are learned during the offline training phase, and the dual variables evolve through gradient updates while executing the learned state-augmented policies during the inference phase. Our main contributions are to illustrate how near-optimal initialization of dual multipliers for faster inference can be accomplished with dual variable regression, leveraging a secondary GNN parametrization, and how maximization of the Lagrangian over the multipliers sampled from the dual descent dynamics substantially improves the training of state-augmented models. We demonstrate the superior performance of the proposed algorithm with extensive numerical experiments in a case study of transmit power control. Finally, we prove a convergence result and an exponential probability bound on the excursions of the dual function (iterate) optimality gaps.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.