Papers
Topics
Authors
Recent
2000 character limit reached

USVTrack: USV-Based 4D Radar-Camera Tracking Dataset for Autonomous Driving in Inland Waterways (2506.18737v1)

Published 23 Jun 2025 in cs.CV and cs.RO

Abstract: Object tracking in inland waterways plays a crucial role in safe and cost-effective applications, including waterborne transportation, sightseeing tours, environmental monitoring and surface rescue. Our Unmanned Surface Vehicle (USV), equipped with a 4D radar, a monocular camera, a GPS, and an IMU, delivers robust tracking capabilities in complex waterborne environments. By leveraging these sensors, our USV collected comprehensive object tracking data, which we present as USVTrack, the first 4D radar-camera tracking dataset tailored for autonomous driving in new generation waterborne transportation systems. Our USVTrack dataset presents rich scenarios, featuring diverse various waterways, varying times of day, and multiple weather and lighting conditions. Moreover, we present a simple but effective radar-camera matching method, termed RCM, which can be plugged into popular two-stage association trackers. Experimental results utilizing RCM demonstrate the effectiveness of the radar-camera matching in improving object tracking accuracy and reliability for autonomous driving in waterborne environments. The USVTrack dataset is public on https://usvtrack.github.io.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.