Papers
Topics
Authors
Recent
2000 character limit reached

On Equivariant Model Selection through the Lens of Uncertainty (2506.18629v1)

Published 23 Jun 2025 in cs.LG and stat.ML

Abstract: Equivariant models leverage prior knowledge on symmetries to improve predictive performance, but misspecified architectural constraints can harm it instead. While work has explored learning or relaxing constraints, selecting among pretrained models with varying symmetry biases remains challenging. We examine this model selection task from an uncertainty-aware perspective, comparing frequentist (via Conformal Prediction), Bayesian (via the marginal likelihood), and calibration-based measures to naive error-based evaluation. We find that uncertainty metrics generally align with predictive performance, but Bayesian model evidence does so inconsistently. We attribute this to a mismatch in Bayesian and geometric notions of model complexity, and discuss possible remedies. Our findings point towards the potential of uncertainty in guiding symmetry-aware model selection.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.