Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Learning Causal Graphs at Scale: A Foundation Model Approach (2506.18285v1)

Published 23 Jun 2025 in cs.LG and cs.AI

Abstract: Due to its human-interpretability and invariance properties, Directed Acyclic Graph (DAG) has been a foundational tool across various areas of AI research, leading to significant advancements. However, DAG learning remains highly challenging, due to its super-exponential growth in computational cost and identifiability issues, particularly in small-sample regimes. To address these two challenges, in this work we leverage the recent success of linear transformers and develop a foundation model approach for discovering multiple order-consistent DAGs across tasks. In particular, we propose Attention-DAG (ADAG), a novel attention-mechanism-based architecture for learning multiple linear Structural Equation Models (SEMs). ADAG learns the mapping from observed data to both graph structure and parameters via a nonlinear attention-based kernel, enabling efficient multi-task estimation of the underlying linear SEMs. By formulating the learning process across multiple tasks as a continuous optimization problem, the pre-trained ADAG model captures the common structural properties as a shared low-dimensional prior, thereby reducing the ill-posedness of downstream DAG learning tasks in small-sample regimes. We evaluate our proposed approach on benchmark synthetic datasets and find that ADAG achieves substantial improvements in both DAG learning accuracy and zero-shot inference efficiency. To the best of our knowledge, this is the first practical approach for pre-training a foundation model specifically designed for DAG learning, representing a step toward more efficient and generalizable down-stream applications in causal discovery.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.