Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Leveraging Large Language Model for Intelligent Log Processing and Autonomous Debugging in Cloud AI Platforms (2506.17900v1)

Published 22 Jun 2025 in cs.AI and cs.DC

Abstract: With the increasing complexity and rapid expansion of the scale of AI systems in cloud platforms, the log data generated during system operation is massive, unstructured, and semantically ambiguous, which brings great challenges to fault location and system self-repair. In order to solve this problem, this paper proposes an intelligent log processing and automatic debugging framework based on LLM, named Intelligent Debugger (LLM-ID). This method is extended on the basis of the existing pre-trained Transformer model, and integrates a multi-stage semantic inference mechanism to realize the context understanding of system logs and the automatic reconstruction of fault chains. Firstly, the system log is dynamically structured, and the unsupervised clustering and embedding mechanism is used to extract the event template and semantic schema. Subsequently, the fine-tuned LLM combined with the multi-round attention mechanism to perform contextual reasoning on the log sequence to generate potential fault assumptions and root cause paths. Furthermore, this paper introduces a reinforcement learning-based policy-guided recovery planner, which is driven by the remediation strategy generated by LLM to support dynamic decision-making and adaptive debugging in the cloud environment. Compared with the existing rule engine or traditional log analysis system, the proposed model has stronger semantic understanding ability, continuous learning ability and heterogeneous environment adaptability. Experiments on the cloud platform log dataset show that LLM-ID improves the fault location accuracy by 16.2%, which is significantly better than the current mainstream methods

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: