Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

SurgVidLM: Towards Multi-grained Surgical Video Understanding with Large Language Model (2506.17873v1)

Published 22 Jun 2025 in cs.CV and cs.AI

Abstract: Recent advances in Multimodal LLMs have demonstrated great potential in the medical domain, facilitating users to understand surgical scenes and procedures. Beyond image-based methods, the exploration of Video LLMs (Vid-LLMs) has emerged as a promising avenue for capturing the complex sequences of information involved in surgery. However, there is still a lack of Vid-LLMs specialized for fine-grained surgical video understanding tasks, which is crucial for analyzing specific processes or details within a surgical procedure. To bridge this gap, we propose SurgVidLM, the first video LLM designed to address both full and fine-grained surgical video comprehension. To train our SurgVidLM, we construct the SVU-31K dataset which consists of over 31K video-instruction pairs, enabling both holistic understanding and detailed analysis of surgical procedures. Furthermore, we introduce the StageFocus mechanism which is a two-stage framework performing the multi-grained, progressive understanding of surgical videos. We also develop the Multi-frequency Fusion Attention to effectively integrate low and high-frequency visual tokens, ensuring the retention of critical information. Experimental results demonstrate that SurgVidLM significantly outperforms state-of-the-art Vid-LLMs in both full and fine-grained video understanding tasks, showcasing its superior capability in capturing complex procedural contexts.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.