Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Fetuses Made Simple: Modeling and Tracking of Fetal Shape and Pose (2506.17858v2)

Published 21 Jun 2025 in cs.CV

Abstract: Analyzing fetal body motion and shape is paramount in prenatal diagnostics and monitoring. Existing methods for fetal MRI analysis mainly rely on anatomical keypoints or volumetric body segmentations. Keypoints simplify body structure to facilitate motion analysis, but may ignore important details of full-body shape. Body segmentations capture complete shape information but complicate temporal analysis due to large non-local fetal movements. To address these limitations, we construct a 3D articulated statistical fetal body model based on the Skinned Multi-Person Linear Model (SMPL). Our algorithm iteratively estimates body pose in the image space and body shape in the canonical pose space. This approach improves robustness to MRI motion artifacts and intensity distortions, and reduces the impact of incomplete surface observations due to challenging fetal poses. We train our model on segmentations and keypoints derived from $19,816$ MRI volumes across $53$ subjects. Our model captures body shape and motion across time series and provides intuitive visualization. Furthermore, it enables automated anthropometric measurements traditionally difficult to obtain from segmentations and keypoints. When tested on unseen fetal body shapes, our method yields a surface alignment error of $3.2$ mm for $3$ mm MRI voxel size. To our knowledge, this represents the first 3D articulated statistical fetal body model, paving the way for enhanced fetal motion and shape analysis in prenatal diagnostics. The code is available at https://github.com/MedicalVisionGroup/fetal-smpl .

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 tweets and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: