A Comparative Study of Open-Source Libraries for Synthetic Tabular Data Generation: SDV vs. SynthCity (2506.17847v1)
Abstract: High-quality training data is critical to the performance of machine learning models, particularly LLMs. However, obtaining real, high-quality data can be challenging, especially for smaller organizations and early-stage startups. Synthetic data generators provide a promising solution by replicating the statistical and structural properties of real data while preserving privacy and scalability. This study evaluates the performance of six tabular synthetic data generators from two widely used open-source libraries: SDV (Gaussian Copula, CTGAN, TVAE) and Synthicity (Bayesian Network, CTGAN, TVAE). Using a real-world dataset from the UCI Machine Learning Repository, comprising energy consumption and environmental variables from Belgium, we simulate a low-data regime by training models on only 1,000 rows. Each generator is then tasked with producing synthetic datasets under two conditions: a 1:1 (1,000 rows) and a 1:10 (10,000 rows) input-output ratio. Evaluation is conducted using two criteria: statistical similarity, measured via classical statistics and distributional metrics; and predictive utility, assessed using a "Train on Synthetic, Test on Real" approach with four regression models. While statistical similarity remained consistent across models in both scenarios, predictive utility declined notably in the 1:10 case. The Bayesian Network from Synthicity achieved the highest fidelity in both scenarios, while TVAE from SDV performed best in predictive tasks under the 1:10 setting. Although no significant performance gap was found between the two libraries, SDV stands out for its superior documentation and ease of use, making it more accessible for practitioners.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.