Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Derandomizing Simultaneous Confidence Regions for Band-Limited Functions by Improved Norm Bounds and Majority-Voting Schemes (2506.17764v1)

Published 21 Jun 2025 in stat.ML, cs.LG, cs.SY, eess.SP, and eess.SY

Abstract: Band-limited functions are fundamental objects that are widely used in systems theory and signal processing. In this paper we refine a recent nonparametric, nonasymptotic method for constructing simultaneous confidence regions for band-limited functions from noisy input-output measurements, by working in a Paley-Wiener reproducing kernel Hilbert space. Kernel norm bounds are tightened using a uniformly-randomized Hoeffding's inequality for small samples and an empirical Bernstein bound for larger ones. We derive an approximate threshold, based on the sample size and how informative the inputs are, that governs which bound to deploy. Finally, we apply majority voting to aggregate confidence sets from random subsamples, boosting both stability and region size. We prove that even per-input aggregated intervals retain their simultaneous coverage guarantee. These refinements are also validated through numerical experiments.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.