TPTT: Transforming Pretrained Transformer into Titans (2506.17671v1)
Abstract: Recent advances in LLMs have led to remarkable progress in natural language processing, but their computational and memory demands remain a significant challenge, particularly for long-context inference. We introduce TPTT (Transforming Pretrained Transformer into Titans), a novel framework for enhancing pretrained Transformer models with efficient linearized attention mechanisms and advanced memory management. TPTT employs techniques such as Memory as Gate (MaG) and mixed linearized attention (LiZA). It is fully compatible with the Hugging Face Transformers library, enabling seamless adaptation of any causal LLM through parameter-efficient fine-tuning (LoRA) without full retraining. We show the effectiveness of TPTT on the MMLU benchmark with models of approximately 1 billion parameters, observing substantial improvements in both efficiency and accuracy. For instance, Titans-Llama-3.2-1B achieves a 20% increase in Exact Match (EM) over its baseline. Statistical analyses and comparisons with recent state-of-the-art methods confirm the practical scalability and robustness of TPTT. Code is available at https://github.com/fabienfrfr/tptt . Python package at https://pypi.org/project/tptt/ .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.