Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A geometric framework for momentum-based optimizers for low-rank training (2506.17475v1)

Published 20 Jun 2025 in cs.LG

Abstract: Low-rank pre-training and fine-tuning have recently emerged as promising techniques for reducing the computational and storage costs of large neural networks. Training low-rank parameterizations typically relies on conventional optimizers such as heavy ball momentum methods or Adam. In this work, we identify and analyze potential difficulties that these training methods encounter when used to train low-rank parameterizations of weights. In particular, we show that classical momentum methods can struggle to converge to a local optimum due to the geometry of the underlying optimization landscape. To address this, we introduce novel training strategies derived from dynamical low-rank approximation, which explicitly account for the underlying geometric structure. Our approach leverages and combines tools from dynamical low-rank approximation and momentum-based optimization to design optimizers that respect the intrinsic geometry of the parameter space. We validate our methods through numerical experiments, demonstrating faster convergence, and stronger validation metrics at given parameter budgets.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: