Reflective VLM Planning for Dual-Arm Desktop Cleaning: Bridging Open-Vocabulary Perception and Precise Manipulation (2506.17328v1)
Abstract: Desktop cleaning demands open-vocabulary recognition and precise manipulation for heterogeneous debris. We propose a hierarchical framework integrating reflective Vision-LLM (VLM) planning with dual-arm execution via structured scene representation. Grounded-SAM2 facilitates open-vocabulary detection, while a memory-augmented VLM generates, critiques, and revises manipulation sequences. These sequences are converted into parametric trajectories for five primitives executed by coordinated Franka arms. Evaluated in simulated scenarios, our system achieving 87.2% task completion, a 28.8% improvement over static VLM and 36.2% over single-arm baselines. Structured memory integration proves crucial for robust, generalizable manipulation while maintaining real-time control performance.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.