Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Memory Allocation in Resource-Constrained Reinforcement Learning (2506.17263v1)

Published 9 Jun 2025 in cs.LG and cs.AI

Abstract: Resource constraints can fundamentally change both learning and decision-making. We explore how memory constraints influence an agent's performance when navigating unknown environments using standard reinforcement learning algorithms. Specifically, memory-constrained agents face a dilemma: how much of their limited memory should be allocated to each of the agent's internal processes, such as estimating a world model, as opposed to forming a plan using that model? We study this dilemma in MCTS- and DQN-based algorithms and examine how different allocations of memory impact performance in episodic and continual learning settings.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube