Deep generative models as the probability transformation functions (2506.17171v1)
Abstract: This paper introduces a unified theoretical perspective that views deep generative models as probability transformation functions. Despite the apparent differences in architecture and training methodologies among various types of generative models - autoencoders, autoregressive models, generative adversarial networks, normalizing flows, diffusion models, and flow matching - we demonstrate that they all fundamentally operate by transforming simple predefined distributions into complex target data distributions. This unifying perspective facilitates the transfer of methodological improvements between model architectures and provides a foundation for developing universal theoretical approaches, potentially leading to more efficient and effective generative modeling techniques.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.