Hybrid-Sep: Language-queried audio source separation via pre-trained Model Fusion and Adversarial Diffusion Training (2506.16833v1)
Abstract: Language-queried Audio Separation (LASS) employs linguistic queries to isolate target sounds based on semantic descriptions. However, existing methods face challenges in aligning complex auditory features with linguistic context while preserving separation precision. Current research efforts focus primarily on text description augmentation and architectural innovations, yet the potential of integrating pre-trained self-supervised learning (SSL) audio models and Contrastive Language-Audio Pretraining (CLAP) frameworks, capable of extracting cross-modal audio-text relationships, remains underexplored. To address this, we present HybridSep, a two-stage LASS framework that synergizes SSL-based acoustic representations with CLAP-derived semantic embeddings. Our framework introduces Adversarial Consistent Training (ACT), a novel optimization strategy that treats diffusion as an auxiliary regularization loss while integrating adversarial training to enhance separation fidelity. Experiments demonstrate that HybridSep achieves significant performance improvements over state-of-the-art baselines (e.g., AudioSep, FlowSep) across multiple metrics, establishing new benchmarks for LASS tasks.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.