Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Learning Heat Transport Kernels Using a Nonlocal Heat Transport Theory-Informed Neural Network (2506.16619v1)

Published 19 Jun 2025 in physics.plasm-ph

Abstract: We present a data-driven framework for the modeling of nonlocal heat transport in plasmas using a nonlocal theory informed neural network trained on kinetic Particle-in-Cell simulations that span both local and nonlocal regimes. The model learns spatiotemporal heat flux kernels directly from simulation data, capturing dynamic transport behaviors beyond the reach of classical formulations. Unlike time-independent kernel models such as Luciani Mora Virmont and Schurtz Nicola\"i Busquet models, our approach yields physically grounded, time-evolving kernels that adapt to varying plasma conditions. The resulting predictions show strong agreement with kinetic benchmarks across regimes. This offers a promising direction for data-driven modeling of nonlocal heat transport and contributes to a deeper understanding of plasma dynamics.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.