Consumer-friendly EEG-based Emotion Recognition System: A Multi-scale Convolutional Neural Network Approach (2506.16448v1)
Abstract: EEG is a non-invasive, safe, and low-risk method to record electrophysiological signals inside the brain. Especially with recent technology developments like dry electrodes, consumer-grade EEG devices, and rapid advances in machine learning, EEG is commonly used as a resource for automatic emotion recognition. With the aim to develop a deep learning model that can perform EEG-based emotion recognition in a real-life context, we propose a novel approach to utilize multi-scale convolutional neural networks to accomplish such tasks. By implementing feature extraction kernels with many ratio coefficients as well as a new type of kernel that learns key information from four separate areas of the brain, our model consistently outperforms the state-of-the-art TSception model in predicting valence, arousal, and dominance scores across many performance evaluation metrics.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.