CP$^2$: Leveraging Geometry for Conformal Prediction via Canonicalization (2506.16189v1)
Abstract: We study the problem of conformal prediction (CP) under geometric data shifts, where data samples are susceptible to transformations such as rotations or flips. While CP endows prediction models with post-hoc uncertainty quantification and formal coverage guarantees, their practicality breaks under distribution shifts that deteriorate model performance. To address this issue, we propose integrating geometric information--such as geometric pose--into the conformal procedure to reinstate its guarantees and ensure robustness under geometric shifts. In particular, we explore recent advancements on pose canonicalization as a suitable information extractor for this purpose. Evaluating the combined approach across discrete and continuous shifts and against equivariant and augmentation-based baselines, we find that integrating geometric information with CP yields a principled way to address geometric shifts while maintaining broad applicability to black-box predictors.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.