Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

SGIC: A Self-Guided Iterative Calibration Framework for RAG (2506.16172v1)

Published 19 Jun 2025 in cs.CL

Abstract: Recent research in retrieval-augmented generation (RAG) has concentrated on retrieving useful information from candidate documents. However, numerous methodologies frequently neglect the calibration capabilities of LLMs, which capitalize on their robust in-context reasoning prowess. This work illustrates that providing LLMs with specific cues substantially improves their calibration efficacy, especially in multi-round calibrations. We present a new SGIC: Self-Guided Iterative Calibration Framework that employs uncertainty scores as a tool. Initially, this framework calculates uncertainty scores to determine both the relevance of each document to the query and the confidence level in the responses produced by the LLMs. Subsequently, it reevaluates these scores iteratively, amalgamating them with prior responses to refine calibration. Furthermore, we introduce an innovative approach for constructing an iterative self-calibration training set, which optimizes LLMs to efficiently harness uncertainty scores for capturing critical information and enhancing response accuracy. Our proposed framework significantly improves performance on both closed-source and open-weight LLMs.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.