Improved Intelligibility of Dysarthric Speech using Conditional Flow Matching (2506.16127v1)
Abstract: Dysarthria is a neurological disorder that significantly impairs speech intelligibility, often rendering affected individuals unable to communicate effectively. This necessitates the development of robust dysarthric-to-regular speech conversion techniques. In this work, we investigate the utility and limitations of self-supervised learning (SSL) features and their quantized representations as an alternative to mel-spectrograms for speech generation. Additionally, we explore methods to mitigate speaker variability by generating clean speech in a single-speaker voice using features extracted from WavLM. To this end, we propose a fully non-autoregressive approach that leverages Conditional Flow Matching (CFM) with Diffusion Transformers to learn a direct mapping from dysarthric to clean speech. Our findings highlight the effectiveness of discrete acoustic units in improving intelligibility while achieving faster convergence compared to traditional mel-spectrogram-based approaches.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.