Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Lightweight RL-Driven Deep Unfolding Network for Robust WMMSE Precoding in Massive MU-MIMO-OFDM Systems

Published 19 Jun 2025 in cs.LG | (2506.16072v1)

Abstract: Weighted Minimum Mean Square Error (WMMSE) precoding is widely recognized for its near-optimal weighted sum rate performance. However, its practical deployment in massive multi-user (MU) multiple-input multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) systems is hindered by the assumption of perfect channel state information (CSI) and high computational complexity. To address these issues, we first develop a wideband stochastic WMMSE (SWMMSE) algorithm that iteratively maximizes the ergodic weighted sum-rate (EWSR) under imperfect CSI. Building on this, we propose a lightweight reinforcement learning (RL)-driven deep unfolding (DU) network (RLDDU-Net), where each SWMMSE iteration is mapped to a network layer. Specifically, its DU module integrates approximation techniques and leverages beam-domain sparsity as well as frequency-domain subcarrier correlation, significantly accelerating convergence and reducing computational overhead. Furthermore, the RL module adaptively adjusts the network depth and generates compensation matrices to mitigate approximation errors. Simulation results under imperfect CSI demonstrate that RLDDU-Net outperforms existing baselines in EWSR performance while offering superior computational and convergence efficiency.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.