Papers
Topics
Authors
Recent
2000 character limit reached

From Data to Decision: Data-Centric Infrastructure for Reproducible ML in Collaborative eScience (2506.16051v1)

Published 19 Jun 2025 in cs.LG, cs.DB, cs.DL, and cs.HC

Abstract: Reproducibility remains a central challenge in ML, especially in collaborative eScience projects where teams iterate over data, features, and models. Current ML workflows are often dynamic yet fragmented, relying on informal data sharing, ad hoc scripts, and loosely connected tools. This fragmentation impedes transparency, reproducibility, and the adaptability of experiments over time. This paper introduces a data-centric framework for lifecycle-aware reproducibility, centered around six structured artifacts: Dataset, Feature, Workflow, Execution, Asset, and Controlled Vocabulary. These artifacts formalize the relationships between data, code, and decisions, enabling ML experiments to be versioned, interpretable, and traceable over time. The approach is demonstrated through a clinical ML use case of glaucoma detection, illustrating how the system supports iterative exploration, improves reproducibility, and preserves the provenance of collaborative decisions across the ML lifecycle.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.