From Data to Decision: Data-Centric Infrastructure for Reproducible ML in Collaborative eScience (2506.16051v1)
Abstract: Reproducibility remains a central challenge in ML, especially in collaborative eScience projects where teams iterate over data, features, and models. Current ML workflows are often dynamic yet fragmented, relying on informal data sharing, ad hoc scripts, and loosely connected tools. This fragmentation impedes transparency, reproducibility, and the adaptability of experiments over time. This paper introduces a data-centric framework for lifecycle-aware reproducibility, centered around six structured artifacts: Dataset, Feature, Workflow, Execution, Asset, and Controlled Vocabulary. These artifacts formalize the relationships between data, code, and decisions, enabling ML experiments to be versioned, interpretable, and traceable over time. The approach is demonstrated through a clinical ML use case of glaucoma detection, illustrating how the system supports iterative exploration, improves reproducibility, and preserves the provenance of collaborative decisions across the ML lifecycle.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.