Papers
Topics
Authors
Recent
2000 character limit reached

TrainVerify: Equivalence-Based Verification for Distributed LLM Training (2506.15961v2)

Published 19 Jun 2025 in cs.DC, cs.AI, and cs.LG

Abstract: Training LLMs at scale requires parallel execution across thousands of devices, incurring enormous computational costs. Yet, these costly distributed trainings are rarely verified, leaving them prone to silent errors and potentially wasting millions of GPU hours. We introduce TrainVerify, a system for verifiable distributed training of LLMs. Given a deep learning model's logical specification as the ground truth, TrainVerify formally verifies that a distributed parallel execution plan is mathematically equivalent to it. Direct verification is notoriously difficult due to the sheer scale of LLMs which often involves billions of variables and highly intricate computation graphs. Therefore, TrainVerify introduces shape-reduction techniques and a stage-wise parallel verification algorithm that significantly reduces complexity while preserving formal correctness. TrainVerify scales to frontier LLMs, including the successful verification of the Llama3 (405B) and DeepSeek-V3 (671B) training plans.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.