Linear-Time Primitives for Algorithm Development in Graphical Causal Inference (2506.15758v1)
Abstract: We introduce CIfly, a framework for efficient algorithmic primitives in graphical causal inference that isolates reachability as a reusable core operation. It builds on the insight that many causal reasoning tasks can be reduced to reachability in purpose-built state-space graphs that can be constructed on the fly during traversal. We formalize a rule table schema for specifying such algorithms and prove they run in linear time. We establish CIfly as a more efficient alternative to the common primitives moralization and latent projection, which we show are computationally equivalent to Boolean matrix multiplication. Our open-source Rust implementation parses rule table text files and runs the specified CIfly algorithms providing high-performance execution accessible from Python and R. We demonstrate CIfly's utility by re-implementing a range of established causal inference tasks within the framework and by developing new algorithms for instrumental variables. These contributions position CIfly as a flexible and scalable backbone for graphical causal inference, guiding algorithm development and enabling easy and efficient deployment.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.