Sampling conditioned diffusions via Pathspace Projected Monte Carlo (2506.15743v1)
Abstract: We present an algorithm to sample stochastic differential equations conditioned on rather general constraints, including integral constraints, endpoint constraints, and stochastic integral constraints. The algorithm is a pathspace Metropolis-adjusted manifold sampling scheme, which samples stochastic paths on the submanifold of realizations that adhere to the conditioning constraint. We demonstrate the effectiveness of the algorithm by sampling a dynamical condensation phase transition, conditioning a random walk on a fixed Levy stochastic area, conditioning a stochastic nonlinear wave equation on high amplitude waves, and sampling a stochastic partial differential equation model of turbulent pipe flow conditioned on relaminarization events.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.