Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Sampling conditioned diffusions via Pathspace Projected Monte Carlo (2506.15743v1)

Published 17 Jun 2025 in stat.ML, cs.LG, math.PR, math.ST, and stat.TH

Abstract: We present an algorithm to sample stochastic differential equations conditioned on rather general constraints, including integral constraints, endpoint constraints, and stochastic integral constraints. The algorithm is a pathspace Metropolis-adjusted manifold sampling scheme, which samples stochastic paths on the submanifold of realizations that adhere to the conditioning constraint. We demonstrate the effectiveness of the algorithm by sampling a dynamical condensation phase transition, conditioning a random walk on a fixed Levy stochastic area, conditioning a stochastic nonlinear wave equation on high amplitude waves, and sampling a stochastic partial differential equation model of turbulent pipe flow conditioned on relaminarization events.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.