Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

MicroRicci: A Greedy and Local Ricci Flow Solver for Self-Tuning Mesh Smoothing (2506.15571v1)

Published 18 Jun 2025 in cs.LG and cs.GR

Abstract: Real-time mesh smoothing at scale remains a formidable challenge: classical Ricci-flow solvers demand costly global updates, while greedy heuristics suffer from slow convergence or brittle tuning. We present MicroRicci, the first truly self-tuning, local Ricci-flow solver that borrows ideas from coding theory and packs them into just 1K + 200 parameters. Its primary core is a greedy syndrome-decoding step that pinpoints and corrects the largest curvature error in O(E) time, augmented by two tiny neural modules that adaptively choose vertices and step sizes on the fly. On a diverse set of 110 SJTU-TMQA meshes, MicroRicci slashes iteration counts from 950+=140 to 400+=80 (2.4x speedup), tightens curvature spread from 0.19 to 0.185, and achieves a remarkable UV-distortion-to-MOS correlation of r = -0.93. It adds only 0.25 ms per iteration (0.80 to 1.05 ms), yielding an end-to-end 1.8x runtime acceleration over state-of-the-art methods. MicroRicci's combination of linear-time updates, automatic hyperparameter adaptation, and high-quality geometric and perceptual results makes it well suited for real-time, resource-limited applications in graphics, simulation, and related fields.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.